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Abstract. In this paper we introduce the notion of cyclic (f(t), σ, δ)-codes

for f(t) ∈ A[t;σ, δ]. These codes generalize the θ-codes as introduced by D.
Boucher, F. Ulmer, W. Geiselmann [2]. We construct generic and control

matrices for these codes. As a particular case the (σ, δ)-W -code associated to a

Wedderburn polynomial are defined and we show that their control matrices are
given by generalized Vandermonde matrices. All the Wedderburn polynomials

of Fq [t; θ] are described and their control matrices are presented. A key role

will be played by the pseudo-linear transformations.

1. Introduction and preliminaries

The use of rings in coding theory started when it appeared that working over rings
allowed certain codes to be looked upon as linear codes. The use of noncommuative
rings emerged recently in coding theory due to the pertinence of Frobenius rings
for generalizing Mac Williams theorems (cf. [17], for details) and also because of
the use of Ore polynomial rings as source of generalizations of cyclic codes (cf. e.g.
[2, 3, 16]). With some few exceptions (e.g. [13, 4]) the Ore polynomial rings used so
far in coding theory are mainly of automorphisms type with a (finite) field as base
ring. This paper shows how one can use general Ore extensions to not only define
codes, but as well give their generic and control matrices. Factorizations techniques
in Ore polynomial rings play an important role in these questions and the interested
reader can consult [6, 9, 10] for more information on this matter. Since they are
intimately related to modules over Ore extensions and to factorizations, pseudo-
linear transformations will play an important role in this paper. The reader may
consult [7, 11, 12] for more details on pseudo-linear transformations.

Definitions 1. Let A be a ring with 1 and σ a ring endomorphism of A.

(a) An additive map δ ∈ End(A,+) is a σ-derivation if, for any a, b ∈ A, we have:

δ(ab) = σ(a)δ(b) + δ(a)b.
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(b) Let δ be a σ-derivation of a ring A. The elements of the skew polynomial ring
R = A[t;σ, δ] are sums

∑
ait

i. They are added as ordinary polynomials and
the multiplication is based on the commutation law

ta = σ(a)t+ δ(a), for a ∈ A.

(c) The degree of a nonzero polynomial f = a0 + a1t + a2t
2 + . . . ant

n ∈ R =
A[t;σ, δ] is defined to be deg(f) = max{i|ai 6= 0} and we put, as usual,
deg(0) = −∞.

Examples 1. (1) If σ = id. and δ = 0 we have A[t;σ, δ] = A[t], the usual poly-
nomial ring in a commuting variable. If only σ = id. but δ 6= 0 we denote
A[t; id., δ] as A[t; δ] and speak of a polynomial ring of derivation type. On the
other hand, if δ = 0 but σ 6= id., we write A[t;σ, δ] as A[t;σ] and refer to this
Ore extension as a polynomial ring of endomorphism type.

(2) Let σ stand for the usual conjugation of the complex number C and consid-
er C[t;σ, 0]. Notice that, since σ2 = id., we can check that t2 is a central
polynomial.

(3) Let k be field, R = k[x][t; id.; d/dx]. This is the weyl algebra. The commu-
tation law is tx − xt = 1. If chark = 0 the Weyl algebra is a simple ring. In
contrast if chark = p > 0 then tp and xp are central elements.

(4) For a ∈ A, we define the inner σ-derivation induced by a (denoted da,σ) in
the following way: for r ∈ A, da,σ(r) := ar − σ(r)a. Let us remark that
A[t;σ, da,σ] = A[t − a, σ]. Similarly, for an inner automorphism Ia induced
by an invertible element a ∈ A and defined by Ia(x) = axa−1 for x ∈ A, we
have A[t; Ia] = A[a−1t]. Let us mention that an easy computation shows that
if there exists a central element c ∈ Z(A), where Z(A) denotes the center of
A, such that c − σ(c) is an invertible element of Z(A), then the derivation δ
is inner induced by (c − σ(c))−1δ(c). In particular, if A is a field then either
σ = id or δ is inner. More particularly, all Ore extensions built on a finite
field Fq are of the form Fq[t; θ] where θ is an automorphism of Fq.

(5) It is well-known that finiteness conditions force (σ)-derivations to be inner
(Cf. e.g. [1]). We now give an easy example of a (finite) ring having a non-
inner σ-derivation. Let K be any ring and σ a non inner automorphism of K.
Consider the ring A ⊂M2(K) defined by:

A :=

{(
a b
0 a

)
| a, b ∈ K, σ(a) = a

}
.

We extend σ to A by letting it act on each coefficient of the matrices and
define the additive map δ by setting:

δ

((
a b
0 a

))
=

(
0 σ(b)
0 0

)
for a, b ∈ K with σ(a) = a.

One can check that this map is indeed a non inner sigma-derivation. For
instance one can put K = Fq and let σ be the Frobenius map. Hence, in this
case, A is a finite ring with a non-inner σ-derivation.

(6) Let p be a prime number, n ∈ N and q = pn. Consider R = Fq the finite
field with q elements and θ the Frobenius automorphism defined by θ(a) =
ap for a ∈ Fq. Skew polynomial ring Fq[t; θ] have been used recently in
the context of noncommutative codes. The main advantage of R = Fq[t; θ]
versus the classical Fq[x] is that a given polynomial p(t) ∈ R admits generally
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many different factorizations. For instance let us consider F4 = F2[α], where
α2 + α+ 1 = 0, and some factorizations of t4 + 1 ∈ F4[t; θ]:

t4 + 1 = (t2 + 1)(t2 + 1)

= (t2 + αt+ α)(t2 + αt+ α2)

= (t2 + α2t+ α2)(t2 + α2t+ α)

= (t2 + αt+ α2)(t2 + αt+ α) = ...

In fact, it has been shown recently that factorizations in Fq[t; θ] can be worked
out from factorizations in Fq[x] (cf. [12]).

2. Polynomial and pseudo-linear maps

Let A, σ and δ be a ring, an endomorphism and a σ-derivation of A, respectively.
Let us put R = A[t;σ, δ].

For any f(t) ∈ R and a ∈ A there exists a unique q(t) ∈ A[t, σ, δ] and a unique
s ∈ A such that:

f(t) = q(t)(t− a) + s.

Definitions 2. (a) With these notations, the (right) polynomial map associated
to f(t) ∈ R is

f : A −→ A given by f(a) := s

(b) For i ≥ 0, the right polynomial map determined by ti will be denoted by
Ni. With these notations one has that (

∑n
i=0 bit

i)(a) =
∑n
i=0 biNi(a) for

any polynomial f(t) =
∑n
i=0 bit

i ∈ R. When δ = 0 one has Ni(a) =
σi−1(a)σi−2(a) . . . σ(a)a, this justifies the notation Ni.

(c) Let AV be a left A-module. An additive map T : V −→ V such that, for
α ∈ A and v ∈ V ,

T (αv) = σ(α)T (v) + δ(α)v.

is called a (σ, δ) pseudo-linear transformation (or a (σ, δ)-PLT, for short).

Examples 2. 1. If σ = id. and δ = 0 we get back the standard way of evaluating
a polynomial. It should be noted though, that, since R is not commutative,
we have to specify that this is a right polynomial map. For instance, although
for c ∈ A f(t) = ct = tc ∈ R = A[t], the polynomial map we consider here is
the map f : A −→ A defined by f(a) = ca, for any a ∈ A.

2. Let A, σ and δ be a ring, an endomorphism of A and a σ-derivation of A
respectively. If a ∈ A, the map

Ta : A −→ A x 7→ Ta(x) = σ(x)a+ δ(x)

is a (σ, δ)-PLT defined on the left A-module: AA.
� if σ = id and δ = 0, we get Ta(x) = xa.

� if a = 0, we get T0 = δ
� if a = 1 and δ = 0, we get that T1 = σ.
� if a = 1, we get that T1 = σ + δ.

3. Let V be a free left A-module with basis β = {e1, . . . , en} and let T : V → V
be a (σ, δ)-PLT. This gives rise to a (σ, δ)-PLT on the left A-module An as
follows: first define C = (cij) ∈Mn(A) by T (ei) =

∑n
i cijej . Then we extend

component-wise σ and δ to the ring An. Finally we then define a (σ, δ)-PLT
on An (considered as a left A-module) by TC(v) = σ(v)C + δ(v), for v ∈ An.
Indeed, it is easy to check that we have TC(αv) = σ(α)TC(v) + δ(α)v.
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(4) Let us remark that powers of a (σ, δ)-pseudo-linear transformation defined on
a left A-module V are usually not pseudo-linear. For instance it is easy to
check that, for α ∈ A and v ∈ V , we have

Tn(αv) =

n∑
i=0

fni (α)T i(v),

where fni stands for the sum of all words in σ and δ having n− i letters δ and
i letters σ.

In order to increase the sources of Codes, ring structures (and two sided ideals)
have been replaced by modules (and one-sided ideals). In the case of modules over
Ore extensions the next proposition shows that pseudo-linear maps are unavoidable.
In fact, they are also very useful since they are intimately related to factorizations.
For instance they offer a generalization of the classical fact that in a commutative
setting the evaluation map is a ring homomorphism (cf. Lemma 1).

Proposition 1. Let A be a ring σ ∈ End(A) and δ a σ-derivation of A. For an
additive group (V,+) the following conditions are equivalent:

(i) V is a left R = A[t;σ, δ]-module;
(ii) V is a left A-module and there exists a (σ, δ) pseudo-linear transformation

T : V −→ V ;
(iii) There exists a ring homomorphism Λ : R −→ End(V,+).

Proof. (i)=⇒ (ii) The pseudo-linear map is given by the left multiplication by t.
(ii)=⇒ (iii) The ring homomorphism Λ : R −→ End(V,+) is defined by Λ(f(t)) =

f(T ), where, for f(t) =
∑n
i=0 ait

i ∈ R, f(T ) stands for
∑n
i=0 aiT

i ∈ End(V,+).
(iii)=⇒(i) This is classical.

As a special case of the example (3) above let us mention the important pseudo-
linear transformation associated to a given monic polynomial f of degree n (or
rather to its companion matrix Cf ). The left A-module V is, in this case, R/Rf .
This is given in the following definition.

Definition 1. Let f(t) =
∑n
i=0 ait

i ∈ A[t;σ, δ] be a monic polynomial of degree n
and let

Cf =


0 1 0 . . . 0
0 0 1 0 . . .
...

...
...

...
...

0 0 0 0 1
−a0 −a1 . . . . . . −an−1


be its companion matrix. Then the map

Tf : An −→ An defined by Tf (x1, ..., xn) := (σ(x1), ..., σ(xn))Cf + (δ(x1), ..., δ(xn))

is a pseudo-linear transformation called the pseudo-linear transformation associated
to f .

Example 1. For a ∈ A the map:
Ta : A −→ A

x −→ Ta(x) = σ(x)a+ δ(x)
is the pseudo-linear transformation associated to f(t) = t− a.

Proposition 2. Let a be an element in A and p(t) ∈ A[t;σ, δ]. Then:
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(1) N0(a) = 1 and for i ≥ 0, Ni+1(a) = σ(Ni(a))a+ δ(Ni(a)).
(2) p(Ta)(1) = p(a).

Proof. (1) Since Ni(a) is the remainder upon right division of ti by t− a, we have
ti+1 = tti = t(qi(t)(t−a) +Ni(a)) = tqi(t)(t−a) +σ(Ni(a))t+ δ(Ni(a)) = (tqi(t) +
σ(Ni(a)))(t− a) + σ(Ni(a))a+ δ(Ni(a)). This gives the required equality.
(2) It is enough to show that, for i ≥ 0, Ni(a) = T ia(1). This is clear for i = 0.
Using the point (a) above and an induction we getNi+1(a) = σ(Ni(a))a+δ(Ni(a)) =
Ta(Ni(a)) = Ta(T ia(1)) = T i+1

a (1).

Lemma 1. Let T : V −→ V be a (σ, δ) pseudo-linear transformation defined on
a left A-module V . Then for any polynomial p(t), q(t) ∈ R = A[t;σ, δ] we have
(p(t)q(t))(T ) = p(T )q(T ) ∈ End(V,+).

Proof. Let us recall that if p(t) =
∑
i ait

i ∈ R then p(T ) is the additive endo-
morphism defined by p(T )(v) =

∑
i aiT

i(v), for v ∈ V . Since for v ∈ V the left
R-module structure of V is induced by t.v := T (v), the equality given in the lem-
ma is in fact a simple translation of the fact that (p(t)q(t)).v = p(t).(q(t).v) for
v ∈ V, p(t), q(t) ∈ R.

The formula p(Ta)(1) = p(a) in Proposition 2 can be interpreted as saying that
p(t) ∈ R(t− a) if and only if p(Ta)(1) = 0. This can be generalized as follows: for
a monic polynomial f(t) ∈ R = A[t;σ, δ] we denote, as earlier, Tf the pseudo-linear
map defined on An by the companion matrix of f . We then have p(t) ∈ Rf(t) if
and only if p(Tf )(1, 0, . . . , 0) = (0, . . . , 0) (cf. Theorem 1.10 in [12]). Making use of
the above lemma 1 we then easily get that, for p(t), q(t) ∈ R with deg(q) < deg(f),
p(t)q(t) ∈ Rf if and only if p(Tf )q(Tf )(1, 0, . . . , 0) = (0, . . . , 0) = p(Tf )(q). We refer
the reader to [12] for details. For easy reference, let us sum up this in the following
lemma.

Lemma 2. Let f(t), p(t), q(t) be polynomials in R = A[t;σ, δ] such that f(t) is
monic and deg(q) < deg(f) = n then p(t)q(t) ∈ Rf(t) if and only if p(Tf )(q) =

(0, . . . , 0), where, for q(t) =
∑n−1
i=0 qit

i, we denote q the n-tuple (q0, q1, . . . , qn−1).

For a monic polynomial f(t) ∈ R = A[t;σ, δ] of degree n let us mention the
following proposition which shows how to translate results from the R/Rf to An.

Proposition 3. Let f(t) ∈ R = A[t;σ, δ] be a monic polynomial of degree n > 0.
The map ϕ : R/Rf(t) −→ An given by ϕ(p+Rf) = p(Tf )(1, 0, . . . , 0) is a bijection.

Proof. Since Tf represents the left multiplication by t on R/Rf(t) and since this
corresponds to the pseudo-linear transformation Tf , the above bijection is clear.

The above bijection endows An with a left R = A[t;σ, δ]-module structure.

Let us remark that if (a0, a1, . . . , an−1) ∈ An then ϕ(
∑n−1
i=0 ait

i+Rf) = (a0, . . . ,
an−1). Notice also that the practical effect of this proposition is a way of computing
the remainder of the euclidean right division by f(t).

3. Generic and control matrices of (σ, δ)-codes

Let A be a ring, σ, δ be an endomorphism and a σ-derivation of A respectively.

Definitions 3. Let f(t) be a monic polynomial in R = A[t;σ, δ]. A cyclic (f, σ, δ)-
code is the image ϕ(Rg/Rf) of the cyclic module Rg/Rf where g(t) ∈ A[t;σ, δ] is
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a monic polynomial such that f(t) ∈ Rg(t) and ϕ is the map described in Propo-
sition 3. A cyclic (f, σ, δ)-code C ⊆ An is then the subset of An consisting of the
coordinates of the elements of Rg/Rf in the basis {1, t, . . . , tn−1} for some right
monic factor g(t) of f(t).

In the next theorem we answer a few natural questions related to these notions.

Theorem 1. Let g(t) := g0 + g1t+ · · ·+ grt
r ∈ R be a monic polynomial (gr = 1).

With the above notations we have

(a) The code corresponding to Rg/Rf is a free left A-module of dimension n− r
where deg(f) = n and deg(g) = r.

(b) If v := (a0, a1, . . . , an−1) ∈ C then Tf (v) ∈ C.
(c) The rows of the matrix generating the code C are given by

(Tf )k(g0, g1, . . . , gr, 0, . . . , 0), for 0 ≤ k ≤ n− r − 1.

Proof. (a) We have f = hg for some monic polynomial h ∈ R. Hence as left R-
modules we have also Rg/Rf ∼= R/Rh. Since h is monic R/Rh is a free A-module
of rank deg(h) = n− r.
(b) v = (a0, . . . , an−1) ∈ C if and only if q(t) :=

∑n
i=0 ait

i + Rf ∈ Rg/Rf . Since
tq(t) ∈ Rg/Rf and left multiplication by t on R/Rf corresponds to the action of
Tf on An, we do get that Tf ((a0, . . . , an−1)) ∈ C, as required.
(c) Clearly for any k ≥ 0 we have that T kf (g0, . . . , gr, 0, . . . , 0) ∈ C. On the other

hand it is clear that g+Rf, tg+Rf, . . . , tn−r−1g+Rf are left linearly independent
over A and hence constitutes a basis of Rg/Rf . In terms of code words this gives
that the vectors T kf ((g0, . . . , gr, 0, . . . , 0)) for 0 ≤ k ≤ n− r − 1 form a left A-basis
of the code C.

Examples 3. In the five first examples hereunder A = Fpn stands for a finite field.

(1) If σ = Id., δ = 0, f = tn − 1 and f = gh
(b) gives the cyclicity condition for the code.
(c) we get the standard generating matrix of a cyclic code.

(2) If σ = Id., δ = 0, f = tn − λ and f = gh
(b) gives the constacyclicity condition for the code.
(c) we get the standard generating matrix of a constacyclic code.

(3) f = tn − 1 ∈ R = Fq[t; θ] (θ = “Frobenius”) and f = gh ∈ R
(b) gives the θ-cyclicity condition for the code.
(c) we get the standard generating matrix of a θ-cyclic code (cf. [2]).

(4) If σ = θ, δ = 0, f = tn − λ and f = gh.
(b) gives the θ-constacyclicity condition for the code.
(c) we get the standard generating matrix of a θ-constacyclic code (cf. [3]).

(5) If A = Fq is a finite field and θ ∈ Aut(Fq) we get the skew codes defined
in several papers. Notice that, as mentioned in example 1(4) all the Ore
extensions over a finite field are of this form.

(6) Of course, over a finite ring we can also consider Ore extensions of derivation
type. For instance, let R be the Ore extension R := Fp[x]/(xp−1)[t; d

dx ], where
d
dx denotes the usual derivation. f(t) = tp − 1 is in fact a central polynomial
in R. Although this polynomial is the standard one for building cyclic codes
we will see many differences in the case of cyclic (id., δ)-codes. First let us
give the form of the (right) roots of tp − 1 in A := Fp[x]/(xp − 1). We must
find the elements q(x) ∈ A such that Np(q(x)) = 1. It is easy to compute
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that Np(q(x)) = q(x)p + dp−1

dx (q(x)) (or cf [12]). Hence since xp = 1, we have

Np(q(x)) = q(x) + dp−1

dx (q(x)). Set q(x) =
∑p−1
i=0 aix

i. One can check that

Np(q(x)) = 1 if and only if
∑p−2
i=0 ai = 1. In order to be concrete, let us fix

p = 5. In this case x and x+x4 are roots of t5−1 and one can easily compute
that the polynomial g(t) := t2 − 2xt+ x2 − 1 is in fact the least left common
multiple of t − x and t − (x + x4) in R. A simple reasoning involving the
division algorithm then shows that g(t) is a right (and hence left, since f(t)
is central) factor of t5 − 1. The generating matrix of the cyclic (id., ddx )-code
corresponding to the left module Rg/Rf is given by:

G :=

x2 − 1 −2x 1 0 0
2x x2 + 2 −2x 1 0
2 4x x2 −2x 1

 .

Property (b) in the above theorem 1 characterizes the codes that can be obtained
using a factor of a monic polynomial f .

Definition 2. A monic polynomial f(t) ∈ R = A[t;σ, δ] is invariant if Rf(t) =
f(t)R.

Let C(t) = Rg(t)/Rf(t) be a module code, where f(t), g(t) ∈ R are monic
polynomials such that Rf(t) ⊆ Rg(t). Remark that if either f(t) or g(t) is in-
variant then we can write f(t) = h′(t)g(t) = g(t)h(t), for some monic polynomials
h(t), h′(t) ∈ R. When there exist monic polynomials h(t), h′(t) ∈ R such that
f(t) = h′(t)g(t) = g(t)h(t) the cyclic module Rg(t)/Rf(t) can be described via
annihilators and the code C via control matrices. We start with the following easy
lemma. The proof is left to the reader.

Lemma 3. Let f, g, h, h′ ∈ R be monic polynomials such that f = gh = h′g. Then

(a) gR = annR(h′ + fR) and gR/fR = {p+ fR | p ∈ annR(h′ + fR)}.
(b) Rg = annR(h+Rf) and Rg/Rf = {p+Rf | p ∈ annR(h+Rf)}.

Theorem 2. Let f, g, h, h′ ∈ R be monic polynomials such that f = gh = h′g and
let C denote the code corresponding to the cyclic module Rg/Rf . Then the following
statements are equivalent:

(i) (c0, . . . , cn−1) ∈ C,

(ii) (
∑n−1
i=0 cit

i)h(t) ∈ Rf ,

(iii)
∑n−1
i=0 ciT

i
f (h) = 0,

(iv)
∑n−1
j=0 (

∑n−1
i=j cif

i
j(h))Nj(Cf ) = 0.

Proof. (i) ⇔ (ii) This is just the definition of annR(h+Rf).
(ii) ⇔ (iii) This comes from Lemma 2.
(iii)⇔ (iv) It was mentioned in 2 (4) that, for α ∈ A and v ∈ V , we have Tn(αv) =∑n
i=0 f

n
i (α)T i(v). Similarly we have, for any i ≥ 0 T if (v) =

∑
f ij(v)Nj(Cf ). This

formula was proved in [11].

In view of the above it seems natural to set the following definition.

Definition 3. For a left (resp. right) linear code C ⊆ An, we say that a matrix H
is a control matrix if C = lann(H) (resp. C = rann(H)).

From the above theorem 2(iii) we immediately get the following corollary.
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Corollary 1. For a code C determined by the left R-module Rg/Rf such that there
exist monic polynomials h, h′ ∈ R with f = gh = h′g the matrix H whose ith row
is T i−1f (h), for 1 ≤ i ≤ deg(f) is a control matrix.

We show hereunder that the above Theorem 2 and Corollary 1 give back the
control matrix of classical cyclic and skew cyclic codes.

Examples 4. (1) Let f(t) = tn − 1 ∈ R = F [t], where F is a (finite) field.
and let g(t), h(t) ∈ R be such that tn − 1 = g(t)h(t) = h(t)g(t). We write

h(t) =
∑k
i=0 hit

i. For v = (v0, . . . , vn−1) ∈ kn, the action of T if is given by

T if (v) = (v0, . . . , vn−1)Ci, where C is the companion matrix associated to the
polynomial tn − 1. Theorem 2 shows that a control matrix associated to the
code C corresponding to Rg/Rf is the following:

h0 h1 . . . hk 0 0 . . . 0

0 h0 . . . hk−1 hk 0 . . . 0
...

...
...

...
...

... . . . 0

0 0 . . . h0 h1 . . . . . . hk
hk 0 . . . 0 h0 . . . . . . hk−1

...
...

...
...

...
... . . .

...

h2 h3 . . . . . . . . . . . . . . . h1
h1 h2 . . . . . . . . . . . . . . . h0


.

Of course, the dimension of Rg/Rf is equal to k and hence the rank of the
control matrix must be n − k. In other words, any set of n − k independent
columns of the above matrix will have C as its (left) kernel. Since the last
n− k columns are in echelon form, they are independent and hence these last
columns give as well a control matrix, say H. Since F is commutative we
can see the code as a right linear code and use the standard transposition
to get the control matrix of this “right” linear code. A control matrix for C
considered as a right linear code is thus just the transpose of H. This is the
standard control matrix.

(2) In the same way as (1) we can consider the θ-cyclic codes and obtain their
control matrices retrieving formulas proved elsewhere (e.g. [2]). In fact we
more generally consider the following situation Let A be a ring and σ an
automorphism of A (classically A is a finite field and σ is the Frobenius au-
tomorphism). Assume tn − 1 = gh = h′g, where g, h, h′ ∈ R are monic

polynomials. Let us write h(t) =
∑k
i=0 hit

i, with hk = 1. The pseudo-linear
transformation defined by f(t) = tn − 1 is the map Tf : An −→ An defined
by Tf (v) = σ(v)C, where C is the companion matrix associated to tn− 1 and
v ∈ An. It is easy to check that the following matrix H is a control matrix
for the code C determined by the module Rg/Rf :

H =



h0 h1 . . . hk 0 0 . . . 0
0 σ(h0) . . . σ(hk−1) σ(hk) 0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . . 0

0 0 . . . σn−k−1(h0) σn−k−1(h1) . . . . . . σn−k−1(hk)

σn−K(hk) 0 . . . 0 σn−k(h0) . . . . . . σn−k(hk−1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . .

.

.

.

σn−2(h2) σn−2(h3) . . . . . . . . . . . . . . . σn−2(h1)

σn−1(h1) σn−1(h2) . . . . . . . . . . . . . . . σn−1(h0)


.

So the last n−k columns are in echelon form and hence linearly independent.
The dimension of the code being equal to k, in good cases (e.g. if the ring is
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a field), this means that they define a control matrix as well. The transpose
of these last columns is exactly the control matrix obtained by other authors
in the case when A is a commutative field.

(3) Let us now give an example of a cyclic code using a derivation. Let A be a ring
and δ be a (usual) derivation on A. For a ∈ A we consider the polynomial
f(t) := (t2 − a)2 ∈ A[t; δ] and put g = h = t2 − a. We easily compute
f(t) = t4 − 2at2 − 2δ(a)t − δ2(a) + a2. The generic matrix G and control
matrix H are equal:

H =


−a 0 1 0
−δ(a) −a 0 1
−a2 0 a 0

aδ(a)− δ(a)a −a2 δ(a) a

 .

One can check that gH = (−a, 0, 1, 0)H = (0, 0, 0, 0). Set H1, H2, H3, H4 to

represent the different columns of H, then H1 + H3(−a) + H4δ(a) = 0 ∈ A4

and H2 + aH4 = 0 ∈ A4. Let H ′ be the 4 × 2 matrix H ′ = (H3, H4). We
easily get that lann(H ′) = lann(H) = C. This shows that H ′ is a control
matrix of the code C.

(4) We now compute a control matrix of the cyclic code given in the above example
3 (4). We have R := F5[x]/(x5 − 1)[t; d

dx ], and f(t) = t5 − 1. This last
polynomial is central and can be factorized as f(t) = g(t)h(t) = h(t)g(t)
where g(t) := t2− 2xt+ x2− 1 and h(t) = t3 + 2xt2 + (3x2 + 2)t+ (4x3 + 3x).
The code we are considering corresponds to the module Rg(t)/(t5 − 1). The
control matrix is given by the matrix H ∈ M5(F5) whose rows are given by
T if (h), 0 ≤ i ≤ 4. The first row is thus h the second row is hCf + d

dx (h). Here

Cf is the companion matrix of t5 − 1 and acts as cyclic permutation. Hence
we get

H =


4x3 + 3x 3x2 + 2 2x 1 0
2x2 + 3 4x3 + 4 3x2 + 4 2x 1
4x+ 1 4x2 + 2 4x3 3x2 + 1 2x
2x+ 4 2x+ 1 x2 + 2 4x3 + 6x 3x2 + 3

3x2 2x+ 1 4x+ 1 3x2 + 3 4x3 + 2x

 .

4. (σ, δ)-W -codes

We will consider cyclic (f(t), σ, δ)-codes corresponding to left cyclic modules of
the form Rg(t)/Rf(t) where f(t), g(t) ∈ R = A[t;σ, δ] are monic polynomials but
g(t) is a Wedderburn polynomial as explained in the following definitions.

Definitions 4. (a) A monic polynomial g(t) ∈ R = A[t;σ, δ] of degree r is a
Wedderburn polynomial if there exist elements a1, . . . , ar ∈ A such that
Rg(t) =

⋂r
i=0R(t − ai). We will refer to these polynomials as W - polyno-

mials.
(b) The n× r generalized Vandermonde matrix defined by a1, . . . , ar is given by:

Vn(a1, . . . , ar) =


1 1 . . . 1
a1 a2 . . . ar
. . . . . . . . . . . .

Nn−1(a1) Nn−1(a2) . . . Nn−1(ar)

 .

Recall that, for 0 ≤ i ≤ n − 1, Ni(a) is the evaluation of ti at a ∈ A (cf.
Definitions 2).
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(c) A (σ, δ)-W -code C ⊆ An is the set of n-tuples in An corresponding to a cyclic
left R-module of the form Rg(t)/Rf(t) such that g(t) is a W -polynomial.

Wedderburn polynomials have been studied in details in [9] and [10]. The generic
matrix corresponding to a (σ, δ)-W -code is the standard one described in 1. But an
easy control matrix can be obtained as described in the next proposition.

Let us first state a general lemma.

Lemma 4. Let f(t), g(t), h(t) ∈ R = A[t;σ, δ] be monic polynomials such that
f(t) = h(t)g(t). Then Rg(t)/Rf(t) = {p(t)g(t) +Rf(t) | deg p(t) < deg h(t)}.

Proof. This is obvious: if m(t)g(t) + Rf(t) ∈ Rg(t)/Rf(t), dividing by the monic
polynomial h(t), we can write m(t) = q(t)h(t) + p(t) with deg p(t) < deg h(t) and
we have m(t)g(t) +Rf(t) = p(t)g(t) +Rf(t).

Proposition 4. Let f(t), g(t) ∈ R = A[t;σ, δ] be monic polynomials of degree
n and r respectively. Suppose that g(t) is a Wedderburn polynomial with f(t) ∈
Rg(t) and let C be the (σ, δ)-W -code of length n corresponding to the left cyclic R-
module Rg(t)/Rf(t). Let a1, . . . , ar ∈ A be such that Rg(t) =

⋂r
i=0R(t−ai). Then

(c0, c1, . . . , cn−1) ∈ C if and only if (c0, c1, . . . , cn−1)Vn(a1, . . . , ar) = (0, . . . , 0).

Proof. Let us remark that a polynomial h(t) =
∑n−1
i=0 hit

i ∈ Rg(t) if and only if
h(ai) = 0 for all 1 ≤ i ≤ r. Since (h(a0), . . . , h(ar)) = (h0, . . . , hn−1)Vn(a1, . . . , ar),
we have h(t) ∈ Rg(t) if and only if (h0, . . . , hn−1)Vn(a1, . . . , ar) = (0, . . . , 0). This
yields the thesis.

Example 2. Let us consider (6) in Examples 3. We have A := F5[x]/(xp − 1)
and R = A[t; d

dx ]. The polynomial g(t) and f(t) in this example are respectively

g(t) = t2 − 2xt + x2 − 1 and f(t) = t5 − 1. Since g(t) is the least left common
multiple of t− x and t− (x+ x4) we get immediately that the control H matrix is
the transpose of the following matrix

Ht = V5(x, x+ x4)t =

(
1 x x2 + 1 x3 + 3x x4 + x2 + 3
1 x+ x4 3 + x2 x+ x3 + 3x4 x4

)
.

One may easily check that GH = 0, where G is the matrix which generates the
code given in this example (cf. 3.

The proposition above amounts to saying that a control matrix is given by the
Vandermonde matrix Vn(a1, . . . , ar). The Vandermonde matrix determined by Wed-
derburn polynomial g(t) can thus be used as a control matrix for the (σ, δ)-W-code
C.

Remarks 1. (1) The Vandermonde matrices are strongly related to Wronskian
matrices and to noncommutative symmetric functions. In a (σ, δ)-setting in-
formation can be found in [5]. In particular, in this reference an axiomatic
method is developed in order to compute the least left common multiple of
polynomials of the form t− a1, . . . , t− an.

(2) In general the existence of a least left common multiple of linear polynomials
of the form t − a1, . . . , t − ar is not guaranteed (for a general ring A). The
exact necessary and sufficient conditions for the existence of a LLCM of such
polynomials is given in Theorem 7.2 in [5].

(3) If A is a division ring the existence of LLCM of t− a1, . . . , t− ar is clear but
its degree can be less then r even if the elements a1, . . . , ar are all distinct.
For several necessary and sufficient conditions for this degree to be equal to
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r we refer the reader to [9] and [10]. In the case of a finite field Fq such a
condition can be found in [14], pp 117-119.

The next theorem gives a characterization of the W-polynomials in R = Fq[t; θ].

Theorem 3. Let p be a prime number and n ∈ N. Let also R be the Ore extension
R = Fq[t; θ], where q = pn and θ is the Frobenius map. We extend θ to R by
defining θ(t) = t. Then:

(a) The polynomial G(t) = t(p−1)n+1−t (resp. G0(t) = t(p−1)n−1 ) is the least left
common multiple of all the linear polynomials t−a, a ∈ Fq (resp. 0 6= a ∈ Fq).

(b) Let G(t) and G0(t) be as in the statement (a) above. For any h(t) ∈ Fq[t; θ],
we have G(t)h(t) = θ(h(t))G(t). The polynomial G0(t) = t(p−1)n − 1 belongs
to the center of R.

(c) Let G(t) and G0(t) be as in the statement (a) above. If g(t), h(t) ∈ Fq[t; θ]
are monic polynomials such that h(t)g(t) = G(t), then θ(g(t))h(t) = G(t).
Similarly if h(t)g(t) = G0(t) then g(t)h(t) = G0(t).

(d) The W-polynomials are exactly the right (and left) factors of the polynomial
G(t) mentioned in statement (a).

Proof. (a) The fact that the polynomial G(t) is a least left common multiple of the
polynomials t− a, such that a ∈ Fq was proved in Theorem 2.3 in [12].
(b) Since θn = id., it is easy to check that G(t)a = θ(a)G(t) and G0(t)a = aG0(t),
for any a ∈ A. This yields the results.
(c) Multiplying the equality h(t)g(t) = G(t) by g(t) on the right we get h(t)g(t)2 =
G(t)g(t) = θ(g(t))G(t) = θ(g(t))h(t)g(t). Since R is an integral domain we obtain
G(t) = h(t)g(t) = θ(g(t))h(t). The statement related to G0(t) is obtained similarly.
(d) Let g(t) be a Wedderburn polynomial, say Rg(t) =

⋂r
i=0R(t−ai). Since G(ai) =

0, for any i = 0, . . . r, we immediately get that G(t) ∈ Rg(t). This shows that g(t)
is a right factor of G(t). By its definition, G(t) is a Wedderburn polynomial. It is a
standard fact that factors of Wedderburn polynomials are themselves Wedderburn
(cf. [9]).

Example 3. Consider the field F16 presented as F2(a, b) where a2 + a+ 1 = 0 and
b2 + ab+ 1 = 0. In R = F16[t; θ, where thta is the Frobenius map, we easily check
that the left common multiple of t−a and t− b is g(t) := t2 +at+a. We also verify
that (t2 + at + a + 1)g(t) = t4 + 1. The control matrix corresponding to the code
Rg/R(t4 − 1) is given by V4(a, b). Explicitly we have

V4(a, b)t =

(
1 a N2(a) N3(a)
1 b N2(b) N3(b)

)t
=

(
1 a 1 a
1 b ab+ a ab+ 1

)t
.

Theorem 3 also shows that even without knowing the roots of the Wedderburn
polynomial g(t), we immediately get a control matrix. This is the content of the
following corollary.

Corollary 2. Let g(t) ∈ R = Fq[t; θ] be a W -polynomial of degree r. As in the

previous theorem let us denote G0(t) = t(p−1)n − 1 and G(t) = t(p−1)n+1 − t. Let
g(t), h(t) ∈ R be monic polynomials such that G(t) = h(t)g(t) and consider the
cyclic (G(t), θ, 0)-code C defined by the R-module Rg(t)/RG(t).

(a) There exists 1 ≤ l ≤ n such that θl(g(t)) = g(t) and we then have G(t) =
h(t)g(t) = g(t)θl−1(h(t)).

(b) The control matrix of the code C is given by the matrix whose rows are
T iG(θl−1(h)) for 0 ≤ i ≤ (p− 1)n.
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(c) Suppose the polynomial g(t) is such that g(0) 6= 0. Then there exists h′(t) ∈
R such that G0(t) = h′(t)g(t) = h(t)g′(t). The control matrix of the code
corresponding to the cyclic module Rg(t)/RG0(t) is given by the matrix whose
rows are T iG0

(h′) for 0 ≤ i ≤ (p− 1)n− 1.

Proof. The proofs are left to the reader.
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